
The Human-Robot Interaction Operating System

Terrence Fong
NASA Ames Research Center
Moffett Field, CA 94035 USA

terry.fong@nasa.gov

Clayton Kunz
NASA Ames Research Center
Moffett Field, CA 94035 USA

ckunz@mail.arc.nasa.gov

Laura M. Hiatt
Carnegie Mellon University
Pittsburgh, PA 15213 USA

lahiatt@cs.cmu.edu

Magda Bugajska
Naval Research Laboratory
Washington, DC 20375 USA

magda.bugajska@nrl.navy.mil

ABSTRACT
In order for humans and robots to work effectively together,
they need to be able to converse about abilities, goals and
achievements. Thus, we are developing an interaction in-
frastructure called the “Human-Robot Interaction Operat-
ing System” (HRI/OS). The HRI/OS provides a structured
software framework for building human-robot teams, sup-
ports a variety of user interfaces, enables humans and robots
to engage in task-oriented dialogue, and facilitates integra-
tion of robots through an extensible API.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

Keywords
human-robot interaction, interaction infrastructure, robot
architecture, multi-agent system

1. INTRODUCTION
There are many forms of human-robot teams, each with
their own benefits and drawbacks[20]. The most common
form is teleoperation, in which a robot is used as a “tool”.
Although teleoperation is appropriate for extreme and un-
known environments, it generally binds system capabilities
to the operator’s skill and performs poorly when communi-
cation is delayed or bandwidth-limited.

At the opposite end of the control spectrum are “autonomous”
robot systems, in which the robot operates independently
to achieve high-level goals and the human functions as a
monitor or supervisor. Autonomous systems can multiply
effort (e.g., a single user commanding multiple robots) and
can function when the communication between human and

Human Robot Interaction’06 Salt Lake City, UT USA

robot is poor, but are often brittle and incapable of handling
unforeseen events.

Regardless of form, human-robot teams only perform well
when humans and robots are able to work in a synergistic
manner. In particular, system configurations that enable
humans and robots to communicate (conversing about goals,
abilities, plans and achievements) and to collaborate (jointly
solving problems) are less brittle, more robust, and better
performing than those that do not.

1.1 Peer-to-peer human-robot interaction
In our work, we are investigating how peer-to-peer human-
robot interaction (HRI) can facilitate communication and
collaboration[10]. Our approach is to develop an interaction
infrastructure that enables humans and robots to communi-
cate and work as partners, in a manner inspired by human
work crews. In our system, for example, robots are able to
ask task-oriented questions of the human in order to obtain
assistance when they are in trouble.

A key feature of our approach is that humans and robots co-
ordinate their actions through dialogue. This helps contex-
tual and situational awareness to be maintained across the
team. Dialogue also enables humans and robots to support
one another. This allows better application of the different
strengths and capabilities of humans and robots, and helps
balance workload.

1.2 A novel infrastructure for HRI
In the following sections, we present a novel interaction in-
frastructure, the “Human-Robot Interaction Operating Sys-
tem” (HRI/OS), which is inspired by the collaborative con-
trol model[11]. The HRI/OS is an agent-based system that
provides a structured framework and set of interaction ser-
vices for human-robot teams. We have designed the HRI/OS
to facilitate the integration of a wide range of user interfaces
and robots through an extensible API.

We begin by describing the types of tasks and the team-
work model that the HRI/OS supports. We then discuss
the design of the HRI/OS: its agent-based structure and the
primary agents that comprise the system. Finally, we exam-
ine the HRI/OS in practice, focusing on a use case involving
multiple humans and robots.



Figure 1: The Human-Robot Interaction Operating System (HRI/OS) is an agent-based system.

2. APPROACH
2.1 Operational Tasks
The HRI/OS is designed to support the performance of oper-
ational tasks, which are tasks that are concrete, well-defined,
narrow in scope and amenable to joint human-robot perfor-
mance. In space exploration, for example, operational tasks
include: shelter and work hangar construction, piping as-
sembly and inspection, pressure vessel construction, habitat
inspection, and in-situ resource collection and transport[9].

A pragmatic approach to performing operational tasks is to
specify a high-level set of operations for humans and robots
to execute in parallel and then use interaction to provide
detail and to resolve problems that arise during execution.
This approach is similar to how human teams function, par-
ticularly construction and maintenance work crews.

2.2 Teamwork Model
The teamwork model we use assumes that each member has
a set of skills and resources that they contribute to the team.
In the HRI/OS, high-level tasks are delegated by a central-
ized executive to embodied agents (human or robot), which
it believes capable of satisfying the task and who are not en-
gaged in other work. Agents execute these tasks, performing
detailed planning and monitoring as necessary.

During execution, if an agent finds that its skills or resources
prove to be inadequate to the task, it tries to resolve the sit-
uation through dialogue (i.e., rather than immediately re-
porting task failure). For example, a robot that has diffi-
culty interpreting camera data might ask a human to lend
his visual processing ability to the task. This often allows
tasks to be completed in spite of limitations of autonomy.

If a human requests assistance from a robot, the robot sus-
pends its task before responding. After providing assistance,
the robot then resumes the task. With our teamwork model,
a robot can only be interrupted by one human at a time.
That is, a human cannot interrupt a robot while it is al-
ready providing assistance to another human. Instead, the
human must wait until the robot becomes available.

3. DESIGN
3.1 Agent-based architecture
The HRI/OS is an agent-based system that incorporates
embodied agents (humans and robots) and software agents
(Figure 1). Embodied agents operate in the physical world
and describe their skills at a coarse level, rather than with
the detail typically used by robot planners. Software agents
do not directly change the environment and are designed to
provide limited services. For example, an agent that tracks
objects may provide pose information without handling co-
ordinate frame transformations, which could be provided by
other supporting agents. This design approach helps im-
prove flexibility while reducing system brittleness.

The current implementation uses the Open Agent Archi-
tecture (OAA)[6] for inter-agent communication and dele-
gation. Agents communicate via OAA messages, which are
delegated via a centralized facilitator. Direct, point-to-point
communication (used primarily to transport binary data) is
performed using the “ICE” middleware[13].

In general, when an agent makes a request to the HRI/OS,
it does not know which agent (or agents) will satisfy the
request. Such anonymity reinforces the concept of peer-to-
peer HRI, since any agent making a request to the system



must necessarily treat humans and robots in the same man-
ner. Delegation is performed by OAA, assisted by a domain-
specific resource manager (Section 3.3). In the current im-
plmentation, for example, the resource manager considers
spatial location to improve delegation of physical tasks.

In order for HRI to be productive, humans and robots need
to be able to communicate efficiently and effectively. Conse-
quently, the HRI/OS provides cognitive models and spatial
reasoning capabilities that allow humans to use natural, spa-
tial language (e.g., “move the light to the left of the box”).
Additionally, when a robot asks for help, it is important that
its request be given to a human with appropriate expertise
and ability to respond. Thus, the HRI/OS incorporates an
interaction manager (Section 3.4), which takes into consid-
eration the human’s situation (workload, location, available
user interfaces, etc.) before involving him in dialogue.

The HRI/OS is similar in some respects to interaction in-
frastructures that support non-traditional human-computer
interaction[18, 22, 27]. In particular, the HRI/OS provides
a variety services commonly associated with infrastructures,
such as data and event distribution to heteogeneous clients.
The HRI/OS, however, differs from infrastructures because
it uses a task delegation model and because the “devices”
(humans and robots) are embodied.

A number of HRI architectures have recently been proposed
for human-robot teams[4, 7, 16, 23]. The HRI/OS, however,
differs from these architectures in three significant ways.
First, the HRI/OS is explicitly designed to support human-
robot collaboration across multiple spatial ranges and team
configuration. Second, the HRI/OS assumes that humans
and robots will work on tasks in parallel, with only loose co-
ordination between them. Finally, the HRI/OS allows robot
control authority to pass between different users (i.e., no
operator has exclusive “ownership” of a robot) to improve
flexibility and situational response.

3.2 Task Manager
The Task Manager (TM) is responsible for coordinating and
managing the execution of operational tasks. It does this by
decomposing the overall goal of the system into high-level
tasks, which are assigned to humans or robots for execu-
tion. Only a single task is assigned to a given agent at a
time. Unlike traditional executives, the TM does not know
anything about low-level task details. Instead, it relies on
each agent to work in a distributed, independent manner,
managing and monitoring their own task execution.

The TM is implemented in the Task Description Language
(TDL), a superset of C++ that allows for principled task
execution, coordination and management[21]. TDL allows
the tasks to be represented with appropriate inter-task con-
straints, such as serialization. For example, Figure 2 shows a
construction task in which two panels must both be mounted
before the seam between them can be welded and then in-
spected. Such constraints are important because agents may
not be immediately available to perform tasks, or may need
to suspend execution in order to assist another agent.

To assign a task, the Task Manager contacts the Resource
Manager (Section 3.3) in order to find an agent capable of

Figure 2: Decomposition of a welding task: panels 1
and 2 are mounted, the common seam is welded, and
then inspected. Parts of this task can be performed
in parallel, others require sequencing.

performing the work. The RM either immediately assigns
the task to an agent, in which case the TM begins monitor-
ing the status of the task, or notifies the TM that no agent
is currently available. If this is the case, the TM waits until
some agent is available, then again makes its request.

The TM is designed to recover in the face of error or task
failure. If any task fails, the TM will create another instance
to retry the task. The TM also provides functionality for
reacting to feedback from a task via task monitoring. For
example, if the result of a weld inspection indicates that the
weld is inadequate, the TM will respawn another weld and
inspect pair, repeating this process until the inspect task
indicates that the weld has been successfully completed.

As currently implemented, the TM provides fairly simplis-
tic task management. One improvement would be for the
TM to work in conjunction with the Resource Manager in
order to predict agent availability. This would especially
be helpful when a human requests assistance and there are
multiple robots capable of performing the work, but who
are currently engaged on other tasks. Another improvement
would be for the TM to reassign a task whenever an agent
performing that task has to suspend execution (e.g., in order
to respond to dialogue).

3.3 Resource Manager
The Resource Manager (RM) processes all agent requests,
prioritizing the list of agents to be consulted when a task
needs to performed or a question answered. Unlike facili-
tation in most agent systems, the RM performs delegation
using multiple criteria that vary with time and situation,
rather than simple capability match making. In particular,
in addition to request/capability matching, the RM consid-
ers a variety of factors including availability, physical loca-
tion, workload, past performance, etc.

The current RM is implemented as a collection of OAA
meta-agents. Each meta-agent is designed with limited scope
and reasons only about a single criteria. This approach al-
lows addition of new criteria (i.e., as new meta-agents) with-
out modification of existing code, and thus is more flexible
and extensible than monolithic design. Specifically, domain
and goal specific knowledge and selection criteria can be
added (or removed) as needed.



Robot A: “I need help inspecting a weld.”
Robot Agent → Interaction Manager:
comm request (Robot A, help, weld)

Interaction Manager → Resource Manager:
agent request(help, weld)

Resource Manager → Interaction Manager:
User 1

Interaction Manager → User 1:
message notification

User 1 → Interaction Manager:
message request

Interaction Manager → User 1:
comm request(Robot A, help, weld)

User 1 → Interaction Manager:
comm response(Robot A, endpoint address)

Interaction Manager → Robot A:
comm response(User 1, endpoint address)

Robot A and User 1 begin dialogue

Figure 3: Message exchange resulting from
“Robot A” requesting help.

In the future, we intend to add predictive capabilities to
the RM. One way to do this would be to employ a planner
that can reason about resource allocation and usage. This
would enable delegation to consider not only the current
availability and situation, but also estimated performance
(e.g., time required to service request).

3.4 Interaction Manager
The Interaction Manager (IM) coordinates dialogue-based
interaction between agents. The IM gives each agent the
ability to communicate with other agents: to ask for help, to
provide help, etc. The HRI/OS currently supports graphical
and speech user interfaces, but other modalities (e.g., visual
gesturing) will also be included in the future.

With the HRI/OS, whenever an agent needs to communi-
cate, it sends its request to the IM. The IM queries the
Resource Manager for a list of agents capable of handling
the request and then contacts the first one. If the agent is
a robot, the IM immediately forwards the request. Other-
wise, if the agent is a human, the IM notifies the human that
there is a pending communication and waits for the human
to respond. If the request is time-critical and the receiving
agent fails to respond, the IM tries the next agent on its list.

For example, Figure 3 shows the message exchange between
agents when a robot requests help. Once both parties of the
conversation are engaged, the IM steps out and allows direct
dialogue to begin. The IM only intervenes if the requesting
agent is unable to satisfy its request via the dialogue. In
this case, the IM repeats the dialogue process using the next
agent from the Resource Manager’s list.

In the HRI/OS, agents communicate with one another via
point-to-point “dialogue endpoints”, which are implemented
using the “ICE” middleware[13]. Endpoints allow agents to
send a variety of data (text, images, sensor readings, etc.)
to each other. This approach provides more flexibility and
better performance (quality of service, low-latency transfer,
etc.) than OAA’s centralized, text-based messaging.

3.5 Context Manager
In a complex agent system, keeping track of the activities
and state of agents over time is a difficult task. This is par-
ticularly true when multiple agents operate in parallel and
when activity is observed remotely (e.g., via user interfaces).
Thus, to facilitate situational awareness, we have developed
a Context Manager (CM). The CM keeps track of every-
thing that occurs while the system is running: task status
and execution, agent activities, agent dialogue, etc. Then,
when agents have need to recall history, they can query the
CM for a summary of information.

The CM continuously tracks system state by storing events
and data generated by agents in a time-stamped archive. In
many respects, this approach is similiar to distributed data
logging mechanisms, such as described in [25]. When an
agent requests information concerning another agent, a task,
or a particular system event, the CM searches the archive
and identifies which data are potentially relevant. It then
processes this data to create a summary response.

At present, the CM performs summarization by: (1) prun-
ing duplicate or similar archive data (e.g., a dialogue event
is reported by both the sender and the receiver); (2) sort-
ing messages by time; and (3) making use of dialogue sum-
maries provided by agents. Future work on the CM will
make this process more sophisticated by extracting dialogue
summaries directly from the archive, summarizing the exe-
cution of tasks over time, etc.

The CM is related in many ways to several other event track-
ing systems. Martin et al. (2003) developed an interaction
and collaboration system that tracks agent location, activity,
role, etc. and is capable of summarizing/identifying event
patterns[15]. Similar to this is the Meeting Browser, which
“eavesdrops” on all dialogue that occurs during a meeting
and summarizes it for later use[26]. Other research has fo-
cused on automatic definition, identification, and summa-
rization of evolving events[1].

3.6 Robot Agent
Robot Agents (RA’s) provide an interface between robot
controllers and the HRI/OS. RA’s process requests received
from other agents, manage task execution, and engage in di-
alogue with other agents. The RA is extensible: the current
C++ API contains both a common core (robot-independent)
and custom (robot-specific) methods.

During nominal operation of the HRI/OS, high-level tasks
are assigned to robots by the Task Manager. Upon receiving
an assignment, the RA decomposes the high-level task into a
sequence of primitives to be executed. Once the robot starts
executing the sequence of primitives, it can only be inter-
rupted, or engage in dialogue, at a breakpoint. A breakpoint
is defined as a point in execution where: (1) the task can
be resumed without requiring preservation of context/state;
(2) the task cannot not proceed due to failure or error; or (3)
robot is not working (i.e., waiting for a task to be assigned).

A key feature of the RA is that it provides methods for
asking questions of humans and for handling the responses
received. Whenever a robot has a question to ask, it sends
a message to the Interaction Manager. A message is defined



OAADisambiguation

JNI

Stage (2005-05-12)ACT-(R) 5 (Java)

Frame of Reference Model

Perspective-taking 
Model

Environment

Dialogue Agent Environement 
Agent

Figure 4: Spatial Reasoning Agent architecture

by query attributes (priority level, expiration time, etc.),
query type (y/n, multiple choice, etc.) and message-specific
data (image, text, etc).

The RA provides a variety of run-time support functions.
On start-up, each RA registers the capabilities of its associ-
ated robot with the Resource Manager. During operation,
RA’s periodically broadcast event messages (robot state,
task progress, etc.) to other agents. Finally, the RA is
responsible for coordinating control authority switching be-
tween “system operation” (Task Manager driven) and “user
mode” (human has direct authority of the robot).

3.7 Spatial Reasoning Agent
When human-robot teams perform operational tasks (con-
struction, maintenance, etc.) understanding and communi-
cating spatial dialogue plays a significant role[17]. In partic-
ular, when humans and robots operate in a shared workspace,
robots must be able to understand how humans perceives
space and the relative positions of objects around them. To
give robots this ability, we are developing computational
cognitive models for spatial perspective-taking and frames
of reference[5, 10, 14, 24].

The spatial reasoning agent (SRA) is used to resolve spatial
ambiguities in human-robot dialogue. The current imple-
mentation of the SRA resolves frame of reference ambigui-
ties including ego-, addresse-, object-, and exo-centric refer-
ences. We use the Java version of the ACT-R[3] cognitive
architecture system, jACT-R, and the Player/Stage envi-
ronment [12] to model and resolve frames of reference and
perspective-taking (Figure 4).

Whenever human-robot dialogue involves spatial language,
the HRI/OS forwards a spatial reasoning request to SRA
as a parameter set (speaker, addressee, type of command,
reference objects, and frame of reference). For example, the
command “Robonaut, move to the left of Box 1” from an
astronaut to the robot “Robonaut”, is passed to the SRA
as (astronaut, Robonaut, move, Box 1, left, ego). The SRA
then transforms the spatial dialogue into a geometric refer-
ence using the cognitive model.

To resolve spatial ambiguities, the cognitive model is used
to perform a “mental simulation” of the interaction. First,
the model executes productions, which obtain information
about the relevant objects (current pose of the speaker, ad-

�������

�	��
�

���������

������� ���������

���������

�	��
�

������� �������������� �

�	��
�

���������

������� ���!�����

���������

�	��
�

������� ���!������������

Figure 5: Disambiguation process: (a) Configura-
tion of mental simulation in Stage, (b) Assignment
of frames of reference relevant objects, (c) Resolu-
tion of ambiguous location.

dressee, etc.) and stores them as chunks in declarative mem-
ory. This information is than used to model the real-world
in the Stage simulator (Figure 5a).

When a mental simulation is created, a frame of reference
is assigned to the reference object. The model uses three
frames: ego, referent, and exo. The ego frame of reference
is the traditional egocentric frame that can be applied to
agents and objects. The referent frame of reference is used
when: (1) the object or agent referred to does not have its
own frame of reference and (2) a frame which is a mirror of
another agent’s frame of reference has to be used. Finally,
the exo frame of reference represents the exocentric (world)
coordinate system.

Productions retrieve the information necessary to choose a
frame and location to which it is to be assigned to, and place
the chosen frame at the desired location. Continuing the
example, the referent frame oriented towards the astronaut
would be placed on Box 1 (Figure 5b).

Finally, the desired perspective is assigned to the world
based on the perspective parameter of the request. In the
example given above, the world would be perceived from the
astronaut’s location. At this point, the SRA is able to fully
resolve the spatial language (“left of Box 1”) in both local
(relative to astronaut) and global coordinates (Figure 5c).

3.8 Human Proxy
In order for the HRI/OS to work with humans and robots
in the same “manner”, humans need to appear as software
agents, just as robots do. To do this, we have developed
a human proxy agent that represents user capabilities and
accepts task assignments, much in the same way that the
Robot Agent does for robots. Human proxies have been
used in numerous HRI architectures, such as [7] and [16].

Human proxy agents publish task capabilities, domains of
expertise in which they can be called upon to provide help
via dialogue, and provide health monitoring feedback that
can be used by other agents to track the overall progress of
the task. Human proxy agents make use of user interfaces to
communicate with the users that they represent, and make
use of the Interaction Manager to manage peer-to-peer dia-
logue with other agents.



The relationship between human proxy agents and the users
they represent is complicated by the fact that humans have
more internal state than robots. A human proxy agent
might accept a task on behalf of its user, only to have the
human refuse to perform the task, or worse, agree to per-
form the task and then ignore it. Human proxy agents are
implemented in Java and typically run on a wearable com-
puter, which communicates via a wireless data network and
which integrates with health monitoring sensors.

3.9 User Interfaces
When humans work with robots, they will have different
interaction capabilities depending on a variety of factors:
team configuration (e.g., shared space vs. remote), work-
site environment, communication links, etc. For example, a
suited astronaut can currently only communicate with oth-
ers (humans and robots alike) using speech, while a human
inside a spacecraft or habitat will likely have access to mul-
tiple computer displays and pointing devices. Thus, we have
designed the HRI/OS to support a variety of user interfaces
and languages (currently C++ and Java).

Speech services. The HRI/OS currently provides two facili-
ties for speech interaction: text-to-speech (TTS) and small
vocabulary speech recognition (SR). The TTS and SR agents
are currently implemented using the Microsoft Speech SDK
and run on Windows platforms. In addition, the SR agent
uses the Ariadne Spoken Dialog System, which is a domain
independent toolkit for speech-based applications[8].

Several instances of these agents might be active at any given
point in time, depending on the number of humans active in
a given work scenario. For example, if the scenario includes
a single voice loop shared by all users, then there may be
only be a single TTS agent (which synthesizes speech for
everyone) and individual SR agents for each user.

Graphical user interfaces (GUI). GUI’s provide traditional
pointer and window driven interaction. GUI agents provide
a broader range of dialogue support than speech interfaces,
including images, video, and 2D/3D display. The HRI/OS
currently provides several standard GUI’s for system oper-
ation and simple peer-to-peer query/response dialogue.

The Map GUI shows the current spatial distribution of hu-
mans and robots. It allows its user to initiate dialogue with
specific agents as well as to switch robot control authority
(from Task Manager to user). The Map also displays sta-
tus and event information received from each agent: task in
progress, health data, etc.

Each robot typically also provides a Teleop GUI through
which the human can directly effect control. Some robot
GUI’s support supervisory control; other GUI’s support man-
ual control. With the HRI/OS, Teleop GUI’s can only be
used after a request is made to the robot to switch to user
control. This allows the robot to gracefully suspend any
work that it is engaged in prior to relinquishing control.

4. CASE STUDY
4.1 Use Case: Seam Welding and Inspection
We are currently using the HRI/OS to study a use case that
centers on seam welding by a team of multiple humans and

Figure 6: Seam welding with a human-robot team.
Left to right, (a) an inspection robot (K-10) verifies
the weld between panels P1 and P2, (b) a welding
robot (Robonaut-B) welds panels P2 and P3, (c) two
suited astronauts (EVA1 and EVA2) carry a panel
to the frame for welding, (d) an astronaut (IVA)
inside a habitat provides remote support.

robots. Seam welding is a basic task that will be required
for building and maintaining structures on planetary sur-
faces[19]. For example, linear welds might be used to con-
struct pressure vessels, work hangers, and emergency shel-
ters too large to raise into space in one piece.

In our study, humans work side-by-side and remotely with
two robots, the K-10 rover (NASA Ames) and Robonaut-B
(NASA JSC) to weld∗ panels to a truss structure (Figure 6).
K-10 is a low-cost, highly maneuverable mobile robot de-
signed for human-paced interaction (i.e., it is capable of hu-
man walking speeds) and is equipped with a camera and
high-intensity spotlight. Robonaut-B is a two-armed hu-
manoid robot mounted on a Segway RMP base and carries
a welding tool[2].

In a typical work scenario, two suited astronauts (EVA1
and EVA2) act as master welders and provide initial panel
mounts (e.g, tack welds). The robots perform two types of
tasks. Robonaut-B works as a junior welder and welds seams
between mounted panels. K-10 serves as a seam inspector
and inspects the quality of the welds. A third astronaut
(IVA), who is located inside a habitat, interacts with and
supports the remote workcrew (both humans and robots) via
wireless communications. Throughout the task, humans and
robots work in parallel, supporting each other as necessary.

4.2 HRI/OS Execution
The use case provides numerous opportunities for dynamic
and flexible human-robot interaction. For example, a va-
riety of communication acts are useful: human generated
commands, questions from the robots to the human, etc.

∗Because it is not our goal to improve robotic welding, a
“mock welding” process (e.g., spray painting) is being used
for weld seaming during the study.



Figure 7: Execution sequence of robot supporting a
human.

Additionally, humans and robots may interact in a shared
space (i.e., the workcrew), or remotely (e.g., IVA may tele-
operate or provide assistance to a robot).

4.2.1 Robot supports human
Consider the situation shown in Figure 6. The two suited
astronauts are placing a panel (P4) onto the frame when a
problem occurs: EVA-1 has trouble aligning the panel with
the previous panel (P3). To remedy this problem, EVA-1
uses the HRI/OS to request that a light be pointed at the
bottom right corner of P3. Figure 7 shows the resulting
execution sequence.

The human’s request is initially passed to the IM and RM,
which decides that the K-10 robot is best able to handle
the request. When K-10 reaches a breakpoint in its work, it
suspends its current task and associates itself with EVA-1.
K-10 then uses the underlying agent framework to handle
the request (i.e., to interpret the spatial language). Because
K-10 and EVA-1 are associated, K-10 continues to support
the human (handle requests) until released. At that point,
K-10 resumes execution of its previous task.

A key point about this approach is that the human-robot
team, EVA-1 and K-10, is formed dynamically and lasts only
as long as needed. This approach allows the HRI/OS to pro-
vide flexible response to unforseen problems. This approach
contrasts strongly with other systems, in which a human
typically has long-term “ownership” of a robot (i.e., robot
is a tool). Furthermore, because the robot(s) that support
a human are assigned (by the RM) based on availability,
capability, and a variety of other constraints (e.g., spatial
location), the HRI/OS ensures that resources are used ef-
fectively in response to time-varying situational needs.

4.2.2 Human supports robot
A distinguishing feature of the HRI/OS is that it allows hu-
mans to support robots. For example, if K-10 is inspecting
a seam and determines that it cannot adequately assess the
quality, it can ask “is this seam okay” and send support-
ing inspection data (e.g., an image of the seam in question).
Figure 8 shows the resulting execution sequence.

K-10’s request is initially passed to the IM and RM, which
decides that IVA (the human in the habitat) is best able to

Figure 8: Execution sequence of human supporting
a robot.

handle the request. After reviewing the data sent by K-10,
IVA decides that he needs additional information before an-
swering the question. Consequently, he requests ownership
of K-10 (which suspends its current task when it reaches a
breakpoint), then teleoperates the robot (e.g., moving K-
10’s camera to obtain supplemental views of the seam).
When IVA decides that the seam is bad, he answers the
question and releases K-10, which then resumes execution.

There are several important points to note. First, when a
robot asks for help, the human that is asked to respond is
chosen based on numerous factors including expertise, avail-
ability, etc. This approach is dual to the way robots are se-
lected to support humans. Second, because users often have
different interface capabilities, the form of the information
passed may vary. For example, a suited astronaut with a
speech interface will receive spoken dialogue, whereas a hu-
man with multiple graphical displays will receive images,
charts, etc. Finally, the HRI/OS enables switching of con-
trol between “system” and “user” modes. This facilitates
human-robot teaming in a manner similar to human work
crews, i.e., when a junior crew member (the robot) has trou-
ble, and expert (the human) can step in and take over.

5. CONCLUSION
The HRI/OS is a novel infrastructure for HRI that supports
peer-to-peer dialogue and provides a variety of services, in-
cluding task delegation, resource management, and human
proxy. The HRI/OS enables humans and robots to work
as partners, supporting one another as they perform op-
erational tasks. Moreover, by incorporating computational
cognitive models, the HRI/OS helps make human and robot
more understandable to each other, so that interaction be-
comes more natural.

Our long-term goal is to extend the HRI/OS to support
large human-robot teams. To do this, the Task Manager will
need to be able to dynamically reason about resource usage
and availability. Additionally, although the current system
tracks robot progress, a similar facility is needed for track-
ing human work. This will require more extensive cognitive
modeling and the use of activity monitoring techniques. Fi-
nally, in order for team members to communicate effectively
and understand one another, especially when help is being
requested, mechanisms for establishing common grounding
are needed.



6. ACKNOWLEDGMENTS
We would like to thank Dan Christian and Illah Nourbakhsh
for contributing to the HRI/OS design. We would also like
to thank Lorenzo Flückiger and Robert Burridge for inte-
grating the K-10 and Robonaut-B robots into the HRI/OS.
We would also like to thank David Lees, Pavithra Rajagopalan,
Mikey Siegel, and Vinh To for developing the speech and
graphical user interfaces. This work was sponsored by NASA
grant HRT-ICP-04-0000-0155.

7. REFERENCES
[1] S. Afantenos, K. Liontou, et al. An introduction to the

summarization of evolving events: Linear and
non-linear evolution. In International Workshop on
Natural Language Understanding and Cognitive
Science, 2005.

[2] R. Ambrose, H. Aldridge, et al. Robonaut: Nasa’s
space humanoid. IEEE Intelligent Systems Journal,
Aug 2000.

[3] J. Anderson and C. Lebiere. Atomic components of
thought. Erlbaum, Mahwah, NJ, 1988.

[4] J. Bradshaw et al. Software Agents, chapter KAoS:
Toward an industrial-strength open agent
architecture. MIT Press, 1997.

[5] N. Cassimatis, J. Trafton, et al. Integrating cognition,
perception, and action through mental simulation in
robots. Robotics and Autonomous Systems, 49(1-2),
Nov 2004.

[6] A. Cheyer and D. Martin. The open agent
architecture. Journal of Autonomous Agents and
Multi-Agent Systems, 4(1):143–148, March 2001.

[7] W. Clancey et al. Automating capcom using mobile
agents and robotic assistants. In Proc. AIAA 1st
Space Exploration Conference, 2005.

[8] M. Denecke. Rapid prototyping for spoken dialogue
systems. In Proc. 19th International Conference on
Computational linguistics, 2002.

[9] T. Fong and I. Nourbakhsh. Interaction challenges in
human-robot space exploration. ACM Interactions,
12(2):42–45, 2005.

[10] T. Fong, I. Nourbakhsh, et al. The peer-to-peer
human-robot interaction project. In Space 2005,
number AIAA 2005-6750. AIAA, 2005.

[11] T. Fong, C. Thorpe, and C. Baur. Collaboration,
dialogue, and human-robot interaction. In Proc. 10th
International Symposium on Robotics Research.
Springer, 2001.

[12] B. Gerkey, R. Vaughan, and A. Howard. Player/Stage
project: Tools for multi-robot and distributed sensor
systems. In Proc. International Conference on
Advanced Robotics. 2003.

[13] M. Henning. A new approach to object-oriented
middleware. IEEE Internet Computing, 8(1), 2004.

[14] L. Hiatt, J. Trafton, et al. A cognitive model for
spatial perspective taking. In Proc. 6th International
Conference on Cognitive Modelling. 2004.

[15] C. Martin, D. Schreckenghost, et al. Aiding
collaboration among humans and complex software
agents. In Spring Symposium. AAAI, 2003.

[16] C. Martin, D. Schreckenghost, et al. An environment
for distributed collaboration among humans and
software agents. In Proc. International Conference on
Autonomous Agents and Multi-Agent Systems, 2003.

[17] J. Reitsema, W. Chun, et al. Team-centered virtual
interactive presence for adjustable autonomy. In Space
2005, number AIAA 2005-6606. AIAA, 2005.

[18] M. Roman, C. Hess, et al. Gaia: a middleware
infrastructure to enable active spaces. IEEE Pervasive
Computing, 1(4), 2002.

[19] C. Russell et al. Considerations of metal joining
processes for space fabrication, construction and
repair. In Proc. SAMPE Technical Conference. 1991.

[20] J. Scholtz. Human-robot interactions: Creating
synergistic cyber forces. In A. Schultz and L. Parker,
editors, Multi-robot systems: from swarms to
intelligent automata. Kluwer, 2002.

[21] R. Simmons and D. Apfelbaum. A task description
language for robot control. In Proc. Conference on
Intelligent Robots and Systems, 1998.

[22] J. Sousa and D. Garlan. Aura: an architectural
framework for user mobility in ubiquitous computing
environments. In Proc. IEEE/IFIP Conference on
Software Architecture, 2002.

[23] A. Tews, M. Mataric, and G. Sukhatme. A scalable
approach to human-robot interaction. In Proc. IEEE
International Conference on Robotics and Automation,
2003.

[24] J. Trafton, N. Cassimatis, et al. Enabling effective
human-robot interaction using perspective-taking in
robots. IEEE Trans. on Systems, Man and
Cybernetics, Part A, 49(4), July 2005.

[25] H. Utz, G. Mayer, and G. Kraetzschmar. Middleware
logging facilities for experimentation and evaluation in
robotics. In German Conference on AI, 2004.

[26] A. Waibel, M. Bett, and M. Finke. Meeting browser:
Tracking and summarising meetings. In Broadcast
News Workshop. DARPA, 2003.

[27] T. Winograd. HCI in the New Millennium, chapter
Interaction spaces for 21st century computing.
Addison Wesley, 2001.


